incose_parser#
Attributes#
Classes#
Mixin to provide __str__, __repr__, and __pretty__ methods. See #884 for more details.  | 
|
Mixin to provide __str__, __repr__, and __pretty__ methods. See #884 for more details.  | 
|
Mixin to provide __str__, __repr__, and __pretty__ methods. See #884 for more details.  | 
|
Base class to parse the output of an LLM call.  | 
Module Contents#
- incose_parser.log#
 
- incose_parser.RNG#
 
- class incose_parser.Criteria(**data)#
 Bases:
langchain_core.pydantic_v1.BaseModelMixin to provide __str__, __repr__, and __pretty__ methods. See #884 for more details.
__pretty__ is used by [devtools](https://python-devtools.helpmanual.io/) to provide human readable representations of objects.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- Parameters:
 data (Any) –
- class incose_parser.Requirement(**data)#
 Bases:
langchain_core.pydantic_v1.BaseModelMixin to provide __str__, __repr__, and __pretty__ methods. See #884 for more details.
__pretty__ is used by [devtools](https://python-devtools.helpmanual.io/) to provide human readable representations of objects.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- Parameters:
 data (Any) –
- class incose_parser.RequirementList(**data)#
 Bases:
langchain_core.pydantic_v1.BaseModelMixin to provide __str__, __repr__, and __pretty__ methods. See #884 for more details.
__pretty__ is used by [devtools](https://python-devtools.helpmanual.io/) to provide human readable representations of objects.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
- Parameters:
 data (Any) –
- class incose_parser.IncoseParser#
 Bases:
janus.parsers.parser.JanusParser,langchain.output_parsers.PydanticOutputParserBase class to parse the output of an LLM call.
Output parsers help structure language model responses.
Example
class BooleanOutputParser(BaseOutputParser[bool]): true_val: str = "YES" false_val: str = "NO" def parse(self, text: str) -> bool: cleaned_text = text.strip().upper() if cleaned_text not in (self.true_val.upper(), self.false_val.upper()): raise OutputParserException( f"BooleanOutputParser expected output value to either be " f"{self.true_val} or {self.false_val} (case-insensitive). " f"Received {cleaned_text}." ) return cleaned_text == self.true_val.upper() @property def _type(self) -> str: return "boolean_output_parser"
- parse_input(block)#
 Parse the input block into raw string input ready to be passed to an LLM. Also perform any processing or saving of metadata.
- Parameters:
 block (janus.language.block.CodeBlock) – The CodeBlock to be processed
- Returns:
 A parsed version of the input text
- Return type:
 
- parse(text)#
 Parse a single string model output into some structure.